
Situation Views: Getting Started Handling Anomalies*

Carroll Thronesbery
S&K Technologies

Houston, TX, U.S.A.
c.thronesbery@jsc.nasa.gov

Debra Schreckenghost
Metrica

Houston, TX, U.S.A.
ghost@ieee.org

* 0-7803-7952-7/03/$17.00 2003 IEEE.

Abstract - Event-oriented recognition and display
software has been developed to assist human supervisors
of automated control systems in maintaining situation
awareness and getting started handling anomalies in
those systems. The recognition software encapsulates
data sets describing related events (i.e., a situation),for
review by the human supervisor. The display software
supports quick overviews plus details on demand, as well
as reminding the operator of definitions for the events in
the situation and the expected values of associated
parameters. This work is part of a larger effort at
Johnson Space Center to develop intelligent aids for use
by crew and flight controllers during mission operations.

Keywords: Information visualization, data visualization,
situation awareness, intermittent monitoring.

1 Introduction
At Johnson Space Center (JSC), we are developing

agent-based software to aid crew and flight controllers in
interacting with automated control software during
mission operations [9]. When automation is used to
control complex systems, like advanced life support
systems [1,8], it is important for the automation to
support intermittent monitoring and situation awareness
[12] by humans, who are ultimately responsible for the
safe, reliable operation of those systems [14]. When the
automation performs safely and reliably, human
awareness of ongoing operations is reduced and human
interaction with the underlying system becomes
infrequent. As a result, even highly trained human
supervisors will become less familiar with the details of
the complex, controlled system (e.g., typical performance
levels, timing of expected mode transitions). Yet, those
very details become critical when human supervisors
must understand and respond to an anomaly.

We have developed an approach for automatically
detecting and reporting system performance in a way that
supports routine system evaluation for situation
awareness and anomaly handling. Central to this
approach is the situation, an encapsulated collection of

data structured according to human understanding of
operational events. A situation is organized around a
hierarchy of these events involving both nominal and off-
nominal conditions or procedures, and it can be
contrasted with individual, low-level data changes that
are commonly found in data streams. By organizing the
data in this way, the top-level view of the situation
consists of highly abstracted events derived from a
human’s mental model of such situations. This top-level
view summarizes the transitions among events within the
situation and indicates whether these transitions took
place as expected. The user will often need to look no
further. However, if needed, the details of the situation
can be readily explored because they are hierarchically
organized according to both the domain system-
subsystem relations and the event hierarchy inherent in
the situation. For instance, when tracing the event
hierarchy, the user can see all the events that are expected
within the situation and when they were actually
observed. Alternatively, the user can request summary
performance parameters for each major sub-system (e.g.,
a bioreactor within a water recovery system). If a sub-
system summary is not sufficient, the user can further
request a full set of parameters for the sub-system of
interest. At every level, data plots are available showing
the observed and expected values as well as the times of
observed and expected events.

In this paper we discuss our approach for event-
oriented data capture and display. We describe our
software architecture for situation detection, notification,
and review. We illustrate the use of our software with an
example from an actual anomaly involving a crew water
recovery system at JSC. We relate our work on situation
assessment to that of other researchers. We close by
summarizing our results and future work in this area.

2 Architecture
Our support for situation assessment consists of three
main components:
• Situation Detection: software that recognizes when

the events comprising a situation occur,

• Notification of New Situations: software that notifies
users when a situation is recognized, and

• Situation Inspection: software that aids the user in
reviewing and annotating a situation summary.

In this section we describe these components and discuss
how they work together to provide the user with an
integrated situation assessment capability.

The three components of situation assessment are
implemented using the Distributed Collaboration and
Interaction (DCI) environment[11] (Figure 1). DCI is an
agent-based system developed for use in manned space
operations. It’s purpose is to aid crew and flight
controllers in performing their operational tasks. It
accomplishes this by providing each person with a liaison
agent, called an Attentive Remote Interaction and
Execution Liaison (ARIEL) agent. Each ARIEL agent
provides services for its user that are customized to the
roles its user holds within the space operations
organization. These services are listed below:
• Notification Service: filters incoming notices based

on a specification of what its user is interested in, and
informs the user of the notices of interest based on
the user’s state (e.g., roles, location) and the
importance and urgency of the notice.

• Task Status Service: tracks completion of tasks on
the user’s schedule and requests acknowledgement of
tasks deemed critical to operations.

• Location Service: tracks the current location of it
user; location is modeled as a physical location (e.g.,
in building 4) and a cyber location (online or offline).

• Commanding and Authorization Service: authorizes
users to interact with vehicle and crew systems, and
assists in reconfiguring these systems for interaction.

• State Management Service: manages updates to the
model of user state maintained by the agent.

• User Interface Service: determines how to inform the
user of new information (e.g., notices, schedule
changes) and manages the resulting interface changes

The DCI environment also includes augmenting software
designed to interface legacy domain systems with the
ARIEL agents. The Event Detection Assistant (EDA) is
an example of augmenting software within DCI that
detects events in vehicle and crew systems of interest to
the users within DCI. The EDA consists of recognition
software to detect when events occur and communication
software that imports data from vehicle and crew systems
into the recognition software and exports events detected
by the recognition software to the ARIEL agents.

Situation Detection is accomplished using the Event
Detection Assistant within DCI. EDA is implemented
using the Complex Event Recognition Architecture
(CERA) [5]. CERA was developed in Lisp by I/Net, Inc.,
under a NASA grant. A CERA application defines event
recognizers that specify the environmental conditions that

must hold for an event to be true (e.g., a loss of control
communications event occurs when a safety message is
observed). CERA extends the concept of understanding
as recognition [6,7] that comes from natural language
processing by recognizing complex temporal relationships
among events and by instantiating new events based on
the recognition of patterns of constituent events.
Composite, high-level events can be constructed from
patterns of simple low-level events, resulting in a
hierarchical event structure. For our application,
situations are high-level CERA events. When executed,
CERA monitors a telemetry data stream from the crew
systems. Signals within this data stream activate the
CERA recognizers, resulting in the creation of event data
structures that are exported to the ARIEL agents.

Figure 1. DCI Architecture

Notification of new situations is accomplished using the
ARIEL agents within DCI. Situations detected by CERA
are processed by the Notification Service of each ARIEL
agent to determine if they are of interest to the agent’s
user and, if so, how the user should be notified [10]. The
Notification Service includes an XML pattern-matcher
implemented in Java. This pattern matcher compares the
contents of a recognized situation to a set of predefined
XML patterns that specify which events are of interest to
the user. There is a unique set of predefined patterns
(called notice specifications) for each role that a user can
fulfill (e.g., flight surgeon). Each notice specification
defines the conditions to be matched as well as the
directives to perform when the match holds. The notice
directive specifies how urgently and emphatically to
inform the user of an event, as well as what interaction
mechanism to use (e.g., computer display, pager). If an
incoming situation matches the conditions of a notice
specification, it is annotated with the information below:
• Latency: the urgency of the notice (immediate,

deferred, or archive)
• Focus of attention: the emphasis to be place on the

notice (primary, secondary, or no-shift)

• Modality: the interaction mechanisms to be used
when notifying the user

These three annotations are used by the User Interface
Service to notify a user of the event in the specified
manner. For example, a situation of immediate latency
and primary focus of attention might result in a page with
a 911 in the subject line.

Situation Inspection is supported within DCI by
providing the capability to launch a Situation Viewer
from the ARIEL user interface for all situations of interest
identified by the ARIEL agent. The Situation Viewer is a
Java process that displays the event information captured
by EDA in a situation and overlays it with comments
added by users reviewing the situation and knowledge
about the expected timing of events and the expected
value changes of parameters within these events. The
details of a situation can be inspected either from the
perspective of the domain system-subsystem relations of
systems affected by the situation or the event hierarchy
inherent in the situation. The remainder of this paper
describes the Situation Viewer and illustrates its use for
an example anomaly in the crew water recovery system.

3 Example In Use
Since the purpose of the situation viewer is to allow

operators to gain insight into situations that have
occurred, it is important to follow the use of the situation
viewer through an operator’s investigation of a specific
occurrence of a situation within a specific situation. This
enables the reader to see how the situation viewer exposes
information under the operator’s control. Later sections
will present the software constructs that make this viewer
reusable for new types of situations and in new
application domains.

Monitored System. Johnson Space Center is
conducting a series of test for regenerative life support
systems that can operate continuously for long periods of
time in a largely autonomous fashion to support science
crews in remote habitats. The data shown in the scenario
below is actual data from one of these tests.

In the mission operations concept that these life
support systems are intended to support, the crew is
responsible for most of the day-to-day operations of
science experiments and maintenance of the habitat.
Most of these functions are highly automated to lighten
crew workload. Unfortunately, even the best automation
requires occasional human attention to ensure that it is
functioning properly. The crew are expected to be
familiar with the principles behind the life support
hardware systems and the software systems which control
them. However, when humans are responsible for a large
number of such systems that do not require much

attention, they will inevitably forget some of the details of
operation (variable names, detailed control policies).

The example below is based on actual logged data
from an experiment with an advanced Water Recovery
System (WRS) at Johnson Space Center. The WRS
consists of four sub-systems: a Packed Bed Biological
Water Processing System (PBBWP) which removes
nitrogen and carbon compounds from the water, a
Reverse Osmosis (RO) system which filters our small
particles, an Air Evaporation System (AES) which
evaporates the brine waste product from the RO to
remove salts, and a Post Polishing System (PPS) which
performs a final polishing of the water to remove trace
carbon compounds. In addition, there was a software
control system which controlled the four sub-systems of
the WRS. The software controls system consists of a
skills layer, which performs low-level closed loop control
operations and reports the low level data which is logged
in an archive file. A second layer in the controls system
manages higher level operations (e.g., switching
operating modes for a sub-system in response to changing
conditions of the WRS). This layer is called the Reactive
Action Procedures (RAPs) layer.

Situation Review Scenario. In this scenario, the
RAPs layer loses communications with the skills layer
(called a Loss of Raps Communication, or LORC). When
the skills layer detects the loss of communications, it
responds by safing all four sub-systems and sending a
safety message indicating that RAPs communications
have been lost. A human is called in to handle the
anomaly. This requires manually resetting the control
software, which results in a restoration of RAPs
communication and the restarting of all four sub-systems
(called a Restoration of RAPs Communication or RORC).

Figure 2 is the initial view of this situation. From
this view, the operator is able to see that a LORC-RORC
Situation occurred, lasting from last in the night of May
23, 2001 until the next morning. If the operator has
temporarily forgotten the acronym, the tool-tip text
provides quick assistance, showing that it is the loss and
subsequent recovery of RAPs communications. This
display also informs the operator that the LORC-RORC
Situation consists of two sub-situations, occurring in
sequence: a LORC Situation followed by a RORC
Situation. All four sub-systems (RO, AES, PBBWP, and
PPS) completed safing operations shortly after receiving
the safety message. From general knowledge of the WRS
controls software, the operator will know that regaining
RAPs communications is a manual procedure that could
not occur until people arrived at the WRS laboratory the
next morning, which explains the delay in restarting the
subsystems. Finally, all four sub-systems restarted
shortly after RAPs communications were restored.

During this short review, the operator has been reminded
of what the LORC-RORC Situation is and has seen
generally how this instance of that situation played out.

Figure 2. Situation Hierarchy

 If the operator wishes to have a closer look at the
details behind a portion of the event hierarchy, a click on
a leaf-level node (e.g., RO Safed) will result in a view
like that shown in Figure 3.

Figure 3. Event Logic and Related Observations

From this view, the operator can see the logic
required for concluding that the RO sub-system has been
safed. This view tells the operator that if either of two
complex conditions exist, the RO will be designated as
safed. It also indicates that on this occasion, the first of
the two complex conditions was observed (indicated by
the bold text and the timestamps next to the conditions).

A summary of system functioning during the
situation is available by selecting the “Summary Params”

view. By selection the “Small Plots” option, the view in
Figure 4 will then be displayed.

Figure 4. Small Plots of Summary Parameters

For each parameter, the dashed gray line represents
expected values over the course of the situation and the
solid colored line represents observed values. Generally,
the colored lines follow the course outlined by their
respective expected lines, although some seem to start
drifting a little in the middle of the situation. The
operator notes that this may warrant further investigation.
The bottom row of the small plots view marks where
events within the situation occur. As with the
parameters, gray marks indicate where events are
expected and colored marks indicates where events were
observed. There is an event at mid-situation which has
no corresponding expected mark. To see if this
“unexpected” event is related to the drift of some
parameters, the operator requests a table view of the
summary events (Figure 5) by clicking on the lower line
of the small plots table.

Figure 5. Summary Events Table

The event in this table with no expected time is the
loss of skills communications. From their general
knowledge of the WRS controls system, operators will
know that without the skills processes, no data are
recorded. As a consequence, the apparent drift in the
parameters beginning at mid-situation may be the result
of a plotting artifact (using a straight line to estimate the
data between the two observed points). To investigate
this hypothesis, the operator requests a large plot, which
shows observed points (see Figure 6 below).

The large plot view in Figure 6 marks observed
points by plotting a shape (+, X, triangle, square). Where
the parameters are drifting in mid-situation, there are no
observed points, so the operator’s hypothesis is
confirmed. If the operator needs to see exact data values

for any of the parameters, a tabular view is available. At
this point, the operator has become satisfied that
everything is according to expectation. The operator
records as comments these conclusions about the mid-
situation drift of parameter values so that future reviewers
of this situation will not be confused by them.

Figure 6. Large Plot of Summary Parameters

4 Information Sources
The use of standard data structures in the

information sources for the situation viewer make it
adaptable to new classes of situations and to new domains
beyond life support systems. Some of the information
sources are defined a priori, by a situation designer before
data are collected from the monitored system. Other
information is collected at runtime, identifying parameter
values and observed situation instances.

Data Log. The first source of data used by the
situation viewer is a log of system parameter values
collected at runtime. While this log is quite large, the
information kept in the log is rather simple, identifying
the parameter, the time of the observation, and the
parameter value. In the example above, the parameter
values of each sub-system were logged every 5 minutes.

Situation Instance. This is the report from the
situation recognition software indicating what situations
were recognized and the structure of those situations. A
situation instance includes which events were recognized,
which conditions within the structure were observed, and
the detection times for each event in the hierarchy.

Situation Specification. The situation specification
defines how to recognize situations. It is class level
information defined a priori. It includes information
about the hierarchy of events to be recognized within a
situation, as well as key times and expected values for
parameters that characterize these events.

Parameter Specification. The Parameter
Specification is also made a priori, identifying the links
between parameter identifiers used to retrieve data and
more descriptive names for the parameters, units of
measure, display format, and ideal plot ranges. While
not strictly required, this additional information makes it
possible to provide more informative displays to operators
who may have forgotten a few of the parameter details.

5 Related Work
The task supported by our situation recognition and

display software is the review of meaningful events in a
monitored system. These can be events that occur during
the course of normal operation or events that characterize
an anomaly. In both cases, the user must first understand
the situation indicated by these events. Endsley [4] has
investigated the use of task-oriented software design to
support such situation awareness. According to Endsley,
situation awareness can be thought of as an internalized
mental model of the current state of the operator's
environment. The event recognizers used in our
approach capture the user’s mental model of operational
events and reflect this model in the event hierarchy
represented in the situation view. Endsley’s view of
situation awareness includes the perception of the
elements in the environment, the comprehension of their
meaning and the projection of their status in the near
future. While the meaning of situation for Endsley is
more encompassing than our integrated event-oriented
data, the encapsulated event-oriented data structure
presented by our situation viewer provides an important
part of the information necessary for constructing such
situation awareness.

Christoffersen, Blike, and Woods [3] have
investigated the human process of formulating event-
oriented perceptions from low-level data. They indicate
that the perception of events (or situations) as unified,
organized collections of data occurring over time is
analogous to the perception of objects in space. This
work has strong implications for the types of software
that will support this human cognitive process. They
analyzed anesthesiologists’ interpretations of emergency
room data. They found that events are knowledge-driven
(e.g., even the absence of change was informative when
change was expected). Our approach to automated
situation capture and presentation is to assist the operator
in applying knowledge-driven identification of events and
the encapsulation of related data. They also found that
events are data-driven (i.e., most events were indicated by
sudden changes in properties of system data). While we
use automated event recognition based on pre-defined
patterns of data changes, we also provide manual options
to display any variable of interest. This allows operators
to discover relationships not defined a prior.

Christoffersen also found that human-identified events
are multi-level and nested, which is accommodated by the
hierarchical definition of events in our software.

A third area of related work is information
visualization [2,13]. According to Card, Mackinlay, and
Shneiderman, information visualization is the use of
computer-supported, interactive visual representations of
abstract data to amplify cognition. They present a
reference process model of knowledge crystallization that
supports cognitive amplification through visualization.
The reference model includes such processes as
information foraging, searching for schema, instantiating
schema with data, and packaging patterns found in
output products. Our approach to situation recognition
and presentation assists these processes by supporting
data exploration and by organizing data into meaningful
collections for detailed examination and display to others.

6 Conclusions
We have developed situation display software that

works in coordination with situation recognition software
to support mission operations personnel in maintaining
situational awareness. We have tested this software
using data recorded during a series of experiments with
advanced life support systems at NASA/JSC. This
software identifies important events as they occur,
encapsulates information describing those events, and
presents it to assist human supervisors in understanding
those events. The software design uses data structures
that allow it to be applied to other situation types and to
new domains. This effort is part of a larger effort to
develop intelligent aids for crew and flight controllers.

We intend to evaluate the recognition and display
software with engineers responsible for supervising
intelligent control systems. We also will expand to new
situation types and to new life support systems. Based on
what we learn, we will develop software for users to
specify situation definitions.

References
[1] Bonasso, Pete; David Kortenkamp; & Carroll
Thronesbery. “Intelligent Control of a Water-Recovery
System: Three Years in the Trenches.” AI Magazine,
24(1), pp. 19-44, 2003.

[2] Card, Stuart K.; Jock D. Mackinlay; & Ben
Shneiderman. Readings in Information Visualization:
Using Vision to Think. Morgan Kaufmann Publishers,
Inc.: San Francisco, CA, 1999.

[3] Christoffersen, Klaus; George Blike; & David
Woods. Making Sense of Change: How Practitioners

Extract Events from Data Telemetry Streams. Institute
for Ergonomics/Cognitive Systems Engineering
Laboratory Report, ERGO/CSEL 02-TR-04, 2002.

[4] Endsley, Mica R. “Designing for Situation
Awareness in Complex Systems.” Proceedings of the
Second International Workshop on Symbiosis of Humans,
Artifacts, and Environment. Kyoto, Japan, 2001.

[5] Fitzgerald, Will; R. James Firby; & Michael
Hanneman. Multimodal Event Parsing for Intelligent
User Interfaces. Intelligent User Interfaces. Orlando:
ACM, 2003.

[6] Fitzgerald, W. Building Embedded Conceptual
Parsers. Ph.D. Thesis, Northwestern University, 1994.

[7] Martin, C.E., Case-based parsing and Micro-
DMAP, in Inside Case-Based Reasoning. C.K. Riesbeck
and R.C. Schank, Editors. 1989. Lawrence Erlbaum
Associates: Hillsdale, NJ.

[8] Schreckenghost, D.; D. Ryan; C. Thronesbery; P.
Bonasso; and D. Poirot. Intelligent Control of Life
Support Systems for Space Habitats. AAAI Innovative
Applications of AI. Madison, WI, July 1998.

[9] aSchreckenghost, D.; C. Thronesbery; P. Bonasso;
D. Kortenkamp; & C.l Martin. “Intelligent Control of
Life Support for Space Missions.” IEEE Intelligent
Systems, 17(5), pp. 24-31, September 2002.

[10] bSchreckenghost, D.,C. Martin, and C. Thronesbery.
Specifying Organizational Policies and Individual
Preferences for Human Software Interaction. Proceedings
of AAAI 2002 Fall Symposium on Etiquette for Human-
Computer Work. November 2002.

[11] Schreckenghost, D., Martin, C., Bonasso, P.,
Kortenkamp, D., Milam, T., & Thronesbery, C.
Supporting group interaction among humans and
autonomous agents. Connection Science. 14(4) pp. 361-9.

[12] Thronesbery, C.G., & D.L. Schreckenghost.
“Human Interaction Challenges for Intelligent
Environmental Control Software.” Proceedings of the
28th International Conference on Environmental
Systems. Danvers, MA, 1998.

[13] Tufte, E.R. Envisioning Information, Cheshire:
Graphics Press, 1990.

[14] Woods, D.D. “Steering the Reverberations of
Technology Change on Fields of Practice: Laws that
Govern Cognitive Work.” Plenary Address, Annual
Meeting of the Cognitive Science Society, August 2002.

